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FIG. 4. steady waveforms of amplitude El- EO= O. 2 in a 
material collapsing according to Eq. (20) . The effect of in
creasing curvature in the equilibrium stress-strain curve 
is illustrated. 

are used merely to facilitate the parametric studies 
of Sec. IV. 

B. Collapse Rules 

In this section we address the question of how a 
porous solid collapses to an equilibrium state upon 
load application. 

Let us consider a material point in a nonequilibrium 
state A and having the equilibrium stress-strain 
curve shown as the heavy solid line on Fig. 2. This 
figure has been drawn showing the state point A on 
the Rayleigh line, as it is in a steady wave, but we 
emphasize that the theory is intended to be appli
cable to any collapse process, and that A can refer 
to any state above the equilibrium curve. We will 
assume that the rate of collapse e of the material 
depends on its departure from equilibrium, and take 
as our measure of this departure the distance from 
A to the equilibrium state B at the same strain. 
With this assumption we have the collapse rule 

(12) 

One generalization of this collapse rule that seems 
appropriate is the introduction of strain-dependent 
weighting in the calculation of the collapse rate 
associated with a given departure from equilibrium. 
In this case it would take the form 

(13) 

The necessity for this generalization is suggested 
by observations to be discussed subsequently. 

The simplest special case of Eq. (12) that may be 
of interest is that in which the function cf>l is linear 
and homogeneous: 

(14) 

the case considered by Butcher. Clearly this func
tion must involve a characteristic time and a char
acteristic stress in order that the dimensions of 
each member of Eq. (12) be the same. For the same 

reason, Eq. (13) must also involve one or more 
pairs of such constants. 

The quasistatic collapse, under constant applied 
stress, of a material governed by Eq. (14) is 
readily found to be given implicitly by 

t/T=J.~ {O"*[O"A -O"E(X)]-l}dA (15) 

and hence to be dependent on the form of the function 
O"E(E) as well as the constant TO"*. 

Before discussing wave-propagation problems in
volving Eq. (13), let us consider what conditions 
must be satisfied by the function cf> in order that the 
material respond in a plausible fashion. It is clear 
that the collapse rate must vanish when the material 
is in equilibrium, so we must have cf> (e, 0): 0. Simi
larly, it seems plausible that the collapse rate 
should increase for increasing departure from 
equilibrium at any given strain, so we require that 
cf> be a monotonic increasing function of its second 
argument. Finally, our intent in including the ex
plicit dependence of e on e was to accomodate the 
possibility that, for a given departure from equili
brium, the collapse rate would be greater at large 
strains than at small strains because the reduced 
void size in the first instance would be expected to 
lead to a smaller effective characteristic collapse 
time. To achieve this objective we require that cf> 

also be a monotonic increasing function of its first 
argument when the second is held fixed. Surfaces cf> 
meeting the above conditions slope upward as one 
proceeds in the direction of either increaSing strain 
or overstress. In the special case of Eq. (12) the 
surface becomes a cylindrical sheet with generators 
parallel to the E axiS, and when the collapse rule is 
linear this cylinder becomes a plane. In these latter 
cases, of course, the collapse rule is completely 
represented by a single-valued curve in the (e, 0"- O"E) 
plane. 

To see that Eq. (13) fits naturally into the usual 
theory23 of rate-dependent constitutive equations as 
stated above, we note that it can be rewritten in the 
form 0"= O"E(E)+l/J( E,€), where I/J(E,O):O, and 
I/J (E, E) e ~ ° by invoking the monotonicity conditions 
just discussed. In this form we see that it exhibits 
the usual decomposition of stress into equilibrium 
and nonequilibrium parts. The special case of Eq. 
(12) has the simple inverted form 0"= O"E(E) + cf>il (E), 
which, in the linear case considered by Butcher, is 
further simplified to 0"= O"E(e) + 0"*Tf. • 

IV. STEADY-WAVE PROFILES 

In this section we consider steady-wave propagation 
in materials governed by the collapse rule of Eq. (13) 
and any equilibrium curve 0"= O"E(E) that is concave to 
the stress axis in the region of interest. The solu
tion for general forms of the collapse rule and equil
ibrium curve is reduced to quadrature, and explicit 
closed-form results are given for special cases. 
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FIG. 5. Dependence of steady-wave rise time on amplitude 
according to Eq. (21). 

Since the state far behind a propagating disturbance 
is one of equilibrium, 0"1 = O"E(E1), we see from Eq. 
(10) that the speed of propagation of a steady wave 
is determined by the equilibrium stress-strain curve 
alone and is quite independent of tpe collapse rule. 
In general we have V = {(1/ Po)[ O"E(E1) - O"o](El - Eo)-1}1/2 • 

To solve for a steady waveform we simply substitute 
the first of Eqs. (6) and (7) into the collapse rule 
and integrate. In the general case we find that 

. i.E dx 
~ = - V (0 .0 >/2 ip (X, 0"0 + Po VZ(x - Eo) - O"E(X» , 

1 0 (16) 

where the constant of integration has been chosen so 
that ~ = 0 at the half-amplitude point. Since cp (E, 0) 
= 0 we see that the integrand is singular at both Eo 
and El so that the waveforms considered extend over 
the whole range - 00 < ~ < 00. As a practical matter, 
however, we will see that the bulk of the variation 
is confined to a rather narrow region of space, or 
short interval of time. Since ~ =X - Vt, we can 
easily obtain the strain history at a fixed particle 
(in our examples we take X = 0; the waveform is in
dependent of the choice). Stress and particle-veloc
ity histories are obtained from the strain history by 
means of Eqs. (7) and (8) given in Sec. II. 

In the special case where the stress- strain curve of 
Eq. (11) is used, Eq. (16) takes the Simplified form 

~ Vf.E dX (17) 
= - (01.

0
0>/2 cp (X, POC~2 (E1 - X)(X - Eo» 

where we now have 

(18) 

A. Linear Collapse Rule 

As a specific example, let us determine the steady
wave profile implied by Eq. (17) when the linear 
collapse function (14) is used. Evaluation of the in
tegral is routine and yields the result 

__ VT 10 (~) ~ - (32 (E1 - Eo) g. El - E ' 
(19) 

where V is given by Eq. (18) and where we have 
taken 0"* = Poc~. The strain history obtained from 
Eq. (19) is 

E(t) _ + (E1 - Eo) exp [(32 (E1 - Eo)t/T) 
- Eo 1 + exp [(32 (E1 - Eo)t/T] 

(20) 

Graphs of these waveforms as functions of ampli
tude are shown on Fig. 3 for the case {32 = 10 and on 
Fig. 4 for the fixed amplitude El - Eo=O. 2 and vary
ing values of {32. The stress and particle-velocity 
histories can be obtained from Eq. (20) through the 
simple algebraic relations (7) and (8). Examination 
of Eq. (20) (and the figures) shows that the upper and 
lower halves of the waveforms are symmetrical. 
This symmetry is a property of waveforms governed 
by any collapse rule of the form of Eq. (12) if we 
use the quadratic stress-strain curve, but is not 
generally true otherwise, as is especially evident 
in the example of the locking solid to be discussed 
subsequently. 

Since steady compressive disturbances propagate as 
shocks in the absence of dispersive tendenCies, a 
simple measure of the influence of this latter effect 
is the steady-wave rise time. Various definitions of 
rise time are possible, but for simplicity, ease of 
experimental determination, and uniform applica
bility to various waveforms, we define the rise time 
!Y as that time interval required for the strain at a 
fixed particle to increase from Eo + O. 05 (E1 - Eo) to 
Eo + O. 95 (El - Eo). This is the same as the correspond
ing value for stress or particle velOCity and is given 
by 

(21) 

for the example at hand. We see that the rise time is 
proportional to the ratio of the characteristic time 
of the material to the nonlinear correction to the 
wave speed, and is thus determined by the relative 
importance of the tendencies toward dispersion and 
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FIG. 6. Steady waveforms of various amplitudes in a ma
terial collapsing according to Eq. (24). We have taken {32 
= 10 and (]!2= 100. 


